The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174050 Primes of the form x^2 + y^2 such that L(x)* L(y) = 1, where L is the Liouville lambda-function A008836. 1
 2, 13, 17, 29, 37, 53, 73, 89, 97, 101, 113, 173, 181, 193, 197, 233, 241, 257, 277, 293, 313, 337, 349, 353, 373, 409, 421, 433, 449, 457, 521, 541, 569, 577, 593, 613, 641, 661, 673, 677, 709, 733, 757, 761, 809, 821, 853, 881, 929, 1021, 1033, 1049, 1069 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS One contribution to the set of solutions is from (x,y) where x and y are both prime, see A045637. Another set of solutions is contributed if (x,y) are both in A026424. LINKS EXAMPLE 2 is in the sequence because 2 = 1 + 1 and L(1)*L(1)= (1) *(1) = 1. 13 is in the sequence because 13 = 2^2 + 3^2 and L(2)*L(3)= (-1)*(-1) = 1. 193 is in the sequence because 193 = 12^2 + 7^2 and L(12)*L(7)= (-1)*(-1) = 1. MAPLE isA174050 := proc(n)         local x, y ;         if not isprime(n) then                 return false;         end if;         for x from 1 do                 if x^2 > n then                         return false;                 end if;                 if issqr(n-x^2) then                         y := sqrt(n-x^2) ;                         if A008836(x) * A008836(y) = 1 then                                 return true;                         end if;                 end if;         end do: end proc: for n from 1 to 1100 do         if isA174050(n) then                 printf("%d, \n", n) ;         end if; end do: # R. J. Mathar, Jul 09 2012 MATHEMATICA lambdaQ[{x_, y_}] := LiouvilleLambda[x]*LiouvilleLambda[y] == 1; Select[ Prime /@ Range, Or @@ lambdaQ /@ PowersRepresentations[#, 2, 2] &] (* Jean-François Alcover, Jul 30 2013 *) CROSSREFS Cf. A002819, A002313, A174054. Sequence in context: A018459 A037384 A177964 * A122487 A109181 A175448 Adjacent sequences:  A174047 A174048 A174049 * A174051 A174052 A174053 KEYWORD nonn AUTHOR Michel Lagneau, Mar 06 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 00:29 EDT 2020. Contains 334747 sequences. (Running on oeis4.)