The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174049 Prime numbers of the form x^2+y^2 such that Mobius(x) * Mobius(y) = 1. 1
 2, 13, 29, 37, 53, 101, 173, 197, 293, 421, 541, 677, 709, 1021, 1069, 1117, 1373, 1381, 1429, 1597, 1621, 1669, 1709, 1741, 1789, 1861, 1901, 1933, 2053, 2213, 2269, 2293, 2341, 2381, 2557, 2677, 2749, 2797, 3061, 3109, 3221, 3613, 3637, 3701 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Deleglise, Marc and Rivat, Joel, Computing the summation of the Mobius function. Experiment. Math. 5 (1996), no. 4, 291-295. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844. LINKS Gérard Villemin, Tables des Nombres de Moebius et de Mertens M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. EXAMPLE 2 is in the sequence because 2 = 1^2 + 1^2 and mobius(1)*mobius(1) = 1*1 = 1; 13 is in the sequence because 13 = 2^2 + 3^2 and mobius(2)*mobius(3) = (-1)*(-1) = 1; MAPLE with(numtheory): T:=array(0..50000000): k:=1:for x from 1 to 1000 do: for y from x to 1000 do if mobius(x)* mobius(y)= 1 and isprime(x^2+y^2) then T[k]:=x^2+y^2:k:=k+1 fi od od: mini:=T[1]:ii:=1: for p from 1 to k-1 do for n from 1 to k-1 do if T[n] < mini then mini:= T[n]:ii:=n fi od: print(mini): T[ii]:= 99999999: ii:=1:mini:=T[1] :od: CROSSREFS Cf. A008683. Sequence in context: A033837 A041575 A042917 * A141336 A253970 A298392 Adjacent sequences:  A174046 A174047 A174048 * A174050 A174051 A174052 KEYWORD nonn AUTHOR Michel Lagneau, Mar 06 2010 EXTENSIONS Added punctuation to the examples. Corrected and edited by Michel Lagneau, Apr 25 2010 Typo in name and missing value inserted by D. S. McNeil, Nov 20 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 18:09 EDT 2020. Contains 334787 sequences. (Running on oeis4.)