login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174024 List of primes of the form x^2+y^2 such that tau(x^2+y^2) = bigomega(x*y) 0
13, 17, 29, 37, 53, 101, 173, 197, 293, 677, 1373, 2213, 4493, 5333, 5477, 8837, 9413, 10613, 17957, 18773, 21317, 26573, 27893, 37253, 42437, 54293, 76733, 85853, 94253, 97973, 98597, 100493, 106277, 120413, 139133, 148997, 214373, 217157 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

bigomega(n) is the number of prime divisors of n (counted with multiplicity) (A001222) Because n = x^2+y^2 is prime, tau(n)= 2, and if we suppose x < y, then (x,y) = (2, p) with p prime or (x,y)=(1, 2q) with q prime.

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

J. Peters, A. Lodge and E. J. Ternouth, E. Gifford, Factor Table (n<100000) (British Association Mathematical Tables Vol.V), Burlington House/Cambridge University Press London 1935.

LINKS

Table of n, a(n) for n=1..38.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

Eric Weisstein's World of Mathematics, Distinct Prime Factors.

EXAMPLE

13 = 2^2 + 3^2, bigomega(2*3) = 2.

17 = 1+4^2, bigomega(1*4) = 2.

994013 = 2^2 + 997^2, bigomega(2*997) = 2.

MAPLE

with(numtheory):T:=array(0..50000000):U=array(0..50000000 ): k:=1:for x from 1 to 1000 do:for y from x to 1000 do:if tau(x^2+y^2)= bigomega(x*y) and type(x^2+y^2, prime)=true then T[k]:=x^2+y^2:k:=k+1:else fi:od :od:mini:=T[1]:ii:=1: for p from 1 to k-1 do:for n from 1 to k-1 do:if T[n]< mini then mini:= T[n]:ii:=n: indice:=U[n]: else fi:od:print(mini):T[ii]:= 99999999: ii:=1:mini:=T[1] :od:

CROSSREFS

Cf. A020882, A002313, A001222, A001221 (primes counted without multiplicity), A046660, A144494.

Sequence in context: A154762 A079348 A349667 * A061381 A048520 A283407

Adjacent sequences: A174021 A174022 A174023 * A174025 A174026 A174027

KEYWORD

nonn

AUTHOR

Michel Lagneau, Mar 05 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 09:27 EST 2022. Contains 358556 sequences. (Running on oeis4.)