This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173987 a(n) = denominator of ((Zeta(0,2,2/3) - Zeta(0,2,n+2/3))/9), where Zeta is the Hurwitz Zeta function. 6
 1, 4, 100, 1600, 193600, 9486400, 2741569600, 2741569600, 1450290318400, 245099063809600, 206128312663873600, 3298053002621977600, 3298053002621977600, 1190597133946533913600, 2001393782164123508761600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA a(n) = denominator of 2*(Pi^2)/3 - J - Zeta(2,(3*n+2)/3), where Zeta is the Hurwitz Zeta function and J is the constant A173973. MAPLE a := n -> (Zeta(0, 2, 2/3) - Zeta(0, 2, n+2/3))/9: seq(denom(a(n)), n=0..14); # Peter Luschny, Nov 14 2017 MATHEMATICA Table[FunctionExpand[(1/9)*(4*(Pi^2)/3 - Zeta[2, 1/3] - Zeta[2, (3*n + 2)/3])], {n, 0, 20}] // Denominator (* Vaclav Kotesovec, Nov 13 2017 *) CROSSREFS For numerators see A173985. Cf. A006752, A120268, A173945, A173947, A173948, A173949, A173953, A173955, A173973, A173982, A173983, A173984, A173986. Sequence in context: A017090 A029995 A244352 * A052144 A165518 A127776 Adjacent sequences:  A173984 A173985 A173986 * A173988 A173989 A173990 KEYWORD frac,nonn AUTHOR Artur Jasinski, Mar 04 2010 EXTENSIONS Name simplified by Peter Luschny, Nov 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 16:00 EDT 2018. Contains 301205 sequences. (Running on oeis4.)