login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173982 a(n) = numerator of (Zeta(0,2,1/3) - Zeta(0,2,n+1/3)), where Zeta is the Hurwitz Zeta function. 7
0, 9, 153, 7641, 192789, 32757741, 525987081, 190358321841, 23076404893161, 577743530648769, 578407918658769, 556370890030917009, 160916328686946575601, 220439117509451225357769 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

All numbers in this sequence are divisible by 9.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..300

FORMULA

a(n) = numerator of 2*(Pi^2)/3 + J - Zeta(2,(3*n+1)/3), where Zeta is the Hurwitz Zeta function and the constant J is A173973.

A173982(n)/A173984(n) = sum_{i=0..n} 1/(1/3+i)^2 = 9*sum_{i=0..n} 1/(1+3i)^2 = psi'(1/3) - psi'(n+1/3). - R. J. Mathar, Apr 22 2010

a(n) = numerator of Sum_{k=0..(n-1)} 9/(3*k+1)^2. - G. C. Greubel, Aug 23 2018

MAPLE

A173982 := proc(n) add( 1/(1/3+i)^2, i=0..n-1) ; numer(%) ; end proc: seq(A173982(n), n=0..20) ; # R. J. Mathar, Apr 22 2010

MATHEMATICA

Table[FunctionExpand[-Zeta[2, (3*n + 1)/3] + Zeta[2, 1/3]], {n, 0, 20}] // Numerator (* Vaclav Kotesovec, Nov 13 2017 *)

Numerator[Table[Sum[9/(3*k + 1)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)

PROG

(PARI) for(n=0, 20, print1(numerator(sum(k=0, n-1, 9/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018

(MAGMA) [0] cat [Numerator((&+[9/(3*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018

CROSSREFS

For denominators see A173984.

For A173982/9 see A173983.

Cf. A006752, A120268, A173945, A173947, A173948, A173949, A173953, A173955, A173973, A173982-A173987.

Sequence in context: A012148 A193540 A193543 * A185759 A215557 A208998

Adjacent sequences:  A173979 A173980 A173981 * A173983 A173984 A173985

KEYWORD

frac,nonn

AUTHOR

Artur Jasinski, Mar 04 2010

EXTENSIONS

Name simplified by Peter Luschny, Nov 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 15:31 EDT 2019. Contains 328101 sequences. (Running on oeis4.)