login
A173982
a(n) = numerator of (Zeta(0,2,1/3) - Zeta(0,2,n+1/3)), where Zeta is the Hurwitz Zeta function.
10
0, 9, 153, 7641, 192789, 32757741, 525987081, 190358321841, 23076404893161, 577743530648769, 578407918658769, 556370890030917009, 160916328686946575601, 220439117509451225357769
OFFSET
0,2
COMMENTS
All numbers in this sequence are divisible by 9.
LINKS
FORMULA
a(n) = numerator of 2*(Pi^2)/3 + J - Zeta(2,(3*n+1)/3), where Zeta is the Hurwitz Zeta function and the constant J is A173973.
A173982(n)/A173984(n) = sum_{i=0..n} 1/(1/3+i)^2 = 9*sum_{i=0..n} 1/(1+3i)^2 = psi'(1/3) - psi'(n+1/3). - R. J. Mathar, Apr 22 2010
a(n) = numerator of Sum_{k=0..(n-1)} 9/(3*k+1)^2. - G. C. Greubel, Aug 23 2018
MAPLE
A173982 := proc(n) add( 1/(1/3+i)^2, i=0..n-1) ; numer(%) ; end proc: seq(A173982(n), n=0..20) ; # R. J. Mathar, Apr 22 2010
MATHEMATICA
Table[FunctionExpand[-Zeta[2, (3*n + 1)/3] + Zeta[2, 1/3]], {n, 0, 20}] // Numerator (* Vaclav Kotesovec, Nov 13 2017 *)
Numerator[Table[Sum[9/(3*k + 1)^2, {k, 0, n - 1}], {n, 0, 20}]] (* G. C. Greubel, Aug 23 2018 *)
PROG
(PARI) for(n=0, 20, print1(numerator(sum(k=0, n-1, 9/(3*k+1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
(Magma) [0] cat [Numerator((&+[9/(3*k+1)^2: k in [0..n-1]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Artur Jasinski, Mar 04 2010
EXTENSIONS
Name simplified by Peter Luschny, Nov 14 2017
STATUS
approved