login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173955 a(n) = numerator of (Zeta(2, 3/4) - Zeta(2, n-1/4))/16 where Zeta(n, a) is the Hurwitz Zeta function. 11
0, 1, 58, 7459, 192404, 70791869, 37930481726, 3100675399831, 3000384410275816, 3016572632600497, 512004171837010018, 950047080453398607307, 2104850677799349861903388, 609822785846772474028096357, 611130542819711220012487366 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The denominators are given in A173954.

a(n+2)/A173954(n+2) = (Zeta(2, 3/4) - Zeta(2, n + 7/4))/16 gives, for n >= 0, the partial sum Sum_{k=0..n} 1/(4*n + 3). In the limit n -> infinity the series value is Zeta(2,3/4)/16, with the Hurwitz Zeta function, and it is given in A247037. - Wolfdieter Lang, Nov 15 2017

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..250

FORMULA

a(n) = numerator of r(n) with r(n) =  (Pi^2 - 8*Catalan - Zeta(2, n - 1/4))/16, with the Hurwitz Zeta function Z(2, z), and the Catalan constant is given in A006752. With Zeta(2, 3/4) = Pi^2 - 8*Catalan this is the formula given in the name.

Numerator of Sum_{k=0..n-2} 1/(4*k + 3)^2, n >= 2, with a(1) = 0. - G. C. Greubel, Aug 23 2018

MAPLE

r := n -> (Zeta(0, 2, 3/4) - Zeta(0, 2, n-1/4))/16:

seq(numer(simplify(r(n))), n=1..15); # Peter Luschny, Nov 14 2017

MATHEMATICA

Table[Numerator[FunctionExpand[(Pi^2 - 8*Catalan - Zeta[2, (4*n - 1)/4])/16]], {n, 1, 20}] (* Vaclav Kotesovec, Nov 14 2017 *)

Numerator[Table[8*n*Sum[(4*k - 1 + 2*n) / ((4*k - 1)^2 * (4*k - 1 + 4*n)^2), {k, 1, Infinity}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 14 2017 *)

Numerator[Table[Sum[1/(4*k + 3)^2, {k, 0, n-2}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 15 2017 *)

PROG

(PARI) for(n=1, 20, print1(numerator(sum(k=0, n-2, 1/(4*k+3)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018

(MAGMA) [0] cat [Numerator((&+[1/(4*k+3)^2: k in [0..n-2]])): n in [2..20]]; // G. C. Greubel, Aug 23 2018

CROSSREFS

Cf. A006752, A120268, A173945, A173947, A173948, A173949, A173953, A173954, A247037.

Sequence in context: A282438 A308391 A128934 * A243466 A201988 A116103

Adjacent sequences:  A173952 A173953 A173954 * A173956 A173957 A173958

KEYWORD

frac,nonn,easy

AUTHOR

Artur Jasinski, Mar 03 2010

EXTENSIONS

Numbers changed according to the old (or new) Mathematica program, and edited by Wolfdieter Lang, Nov 14 2017

Name simplified by Peter Luschny, Nov 14 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 09:54 EST 2020. Contains 330949 sequences. (Running on oeis4.)