

A173859


Expansion of 6/5 in base phi.


0



1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

In sequences A173856 to A173861 and A173864, which define basephi, phi=A001622, expansions of 1+1/k, the length of the period of the digits (discarding the initial 1) is given by A001175(k). Here, with k=5, the period of length 20 is 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, coefficients in front of phi^(1) to phi(20). [From R. J. Mathar, Mar 15 2010]


LINKS

Table of n, a(n) for n=1..105.


MATHEMATICA

RealDigits[ 6/5, GoldenRatio, 111][[1]]


CROSSREFS

Sequence in context: A014017 A121262 A102243 * A202108 A104108 A190610
Adjacent sequences: A173856 A173857 A173858 * A173860 A173861 A173862


KEYWORD

base,easy,nonn


AUTHOR

Robert G. Wilson v, Feb 26 2010


STATUS

approved



