login
Number of permutations of 1..n with no adjacent pair summing to n+3.
0

%I #10 Jul 19 2019 15:20:39

%S 1,1,2,6,12,72,336,2640,17760,175680,1543680,18385920,199019520,

%T 2771112960,35611269120,567422392320,8437755432960,151385755852800,

%U 2556188496691200,50989753530777600,963558923688345600,21152552961009254400,442230750973683302400

%N Number of permutations of 1..n with no adjacent pair summing to n+3.

%C If a(n,k) is the number of permutations of 1..n with no adjacent pair summing to n+k, then a(n,k) = a(n,k+1) for n+k even. [proved by William Keith]

%F k = 3; a(n,k) = Sum_{j=0..m} (-2)^j*binomial(m,j)*(n-j)! where m = max(0, floor((n-k+1)/2)). [_Max Alekseyev_, on the Sequence Fans Mailing List]

%K nonn

%O 0,3

%A _R. H. Hardin_, Feb 26 2010

%E More terms from _Alois P. Heinz_, Jan 09 2017