

A173843


Number of permutations of 1..n with no adjacent pair summing to n+3.


0



1, 1, 2, 6, 12, 72, 336, 2640, 17760, 175680, 1543680, 18385920, 199019520, 2771112960, 35611269120, 567422392320, 8437755432960, 151385755852800, 2556188496691200, 50989753530777600, 963558923688345600, 21152552961009254400, 442230750973683302400
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

If a(n,k) is the number of permutations of 1..n with no adjacent pair summing to n+k, then a(n,k) = a(n,k+1) for n+k even. [proved by William Keith]


LINKS

Table of n, a(n) for n=0..22.


FORMULA

k = 3; a(n,k) = Sum_{j=0..m} (2)^j*binomial(m,j)*(nj)! where m = max(0, floor((nk+1)/2)). [Max Alekseyev, on the Sequence Fans Mailing List]


CROSSREFS

Sequence in context: A076220 A258213 A178846 * A107763 A166470 A144144
Adjacent sequences: A173840 A173841 A173842 * A173844 A173845 A173846


KEYWORD

nonn


AUTHOR

R. H. Hardin, Feb 26 2010


EXTENSIONS

More terms from Alois P. Heinz, Jan 09 2017


STATUS

approved



