login
Triangle T(n, k, q) = round(c(n,q)/(c(k,q)*c(n-k,q))), where c(n,q) = Product_{j=0..n} v(j, q)((1)), v(n, q) = M*v(n-1, q), v(0, q) = {1, 1, 1}, M = {{0, 1, 0}, {0, 0, 1}, {q^3, q^3, 0}}, and q = 2, read by rows.
4

%I #15 Sep 08 2022 08:45:50

%S 1,1,1,1,1,1,1,16,16,1,1,16,256,16,1,1,136,2176,2176,136,1,1,256,

%T 34816,34816,34816,256,1,1,1216,311296,2646016,2646016,311296,1216,1,

%U 1,3136,3813376,61014016,518619136,61014016,3813376,3136,1,1,11776,36929536,2806644736,44906315776,44906315776,2806644736,36929536,11776,1

%N Triangle T(n, k, q) = round(c(n,q)/(c(k,q)*c(n-k,q))), where c(n,q) = Product_{j=0..n} v(j, q)((1)), v(n, q) = M*v(n-1, q), v(0, q) = {1, 1, 1}, M = {{0, 1, 0}, {0, 0, 1}, {q^3, q^3, 0}}, and q = 2, read by rows.

%H G. C. Greubel, <a href="/A173778/b173778.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n,q) = Product_{j=0..n} v(j, q)((1)), v(n, q) = M*v(n-1, q), v(0, q) = {1, 1, 1}, M = {{0, 1, 0}, {0, 0, 1}, {q^3, q^3, 0}}, and q = 2.

%F T(n, k, q) = round( (1/f(k,q))*Product_{j=0..n-k} f(j+k,q)/f(j,q) ), where f(n, q) = 6*q*f(n-2, q) + 8*q^3*f(n-3, q), and f(0,q) = f(1,q) = f(2,q) = 1, and q = 2. - _G. C. Greubel_, Jul 06 2021

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 16, 16, 1;

%e 1, 16, 256, 16, 1;

%e 1, 136, 2176, 2176, 136, 1;

%e 1, 256, 34816, 34816, 34816, 256, 1;

%e 1, 1216, 311296, 2646016, 2646016, 311296, 1216, 1;

%e 1, 3136, 3813376, 61014016, 518619136, 61014016, 3813376, 3136, 1;

%t f[n_, q_]:= f[n, q] = If[n<3, 1, q^3*f[n-2, q] + q^3*f[n-3, q]];

%t c[n_, q_]:= Product[f[j, q], {j, 0, n}];

%t T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];

%t Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 06 2021 *)

%o (Magma)

%o function f(n,k)

%o if n lt 3 then return 1;

%o else return k^3*f(n-2,k) + k^3*f(n-3,k);

%o end if; return f;

%o end function;

%o T:= func< n,k,q | Round( (&*[f(j+k, q)/f(j,q): j in [0..n-k]])/f(k,q) ) >;

%o [T(n,k,2): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 06 2021

%o (Sage)

%o @CachedFunction

%o def f(n,q): return 1 if (n<3) else q^3*f(n-2, q) + q^3*f(n-3, q)

%o def T(n,k,q): return round( product( f(j+k,q)/f(j,q) for j in (0..n-k))/f(k,q) )

%o flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jul 06 2021

%Y Cf. this sequence (q=2), A173779 (q=4).

%Y Cf. A173747, A173749, A173779.

%K nonn,tabl,less

%O 0,8

%A _Roger L. Bagula_, Feb 24 2010

%E Definition corrected and edited by _G. C. Greubel_, Jul 06 2021