login
A173751
a(n) = gcd(n, lcm_{p is a prime divisor of n} (p-1)) = gcd(n, A173614(n)).
1
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 5, 2, 3, 2, 1, 4, 1, 2, 3, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 3
OFFSET
1,6
COMMENTS
a(n) is divisor of A126864(n).
LINKS
A. M. Oller-Marcen, On arithmetic numbers, arXiv preprint arXiv:1206.1823 [math.NT], 2012. From N. J. A. Sloane, Nov 25 2012
EXAMPLE
84 = 2^2*3*7; lcm{p-1|p is prime and divisor of 84} = lcm{1,2,6} = 6; gcd(84,6) = 6 ==> a(84)=6.
MATHEMATICA
fa=FactorInteger; lcm[n_] := Module[{aux = 1, lon = Length[fa[n]]}, Do[aux = LCM[aux, (fa[n][[i]][[1]] - 1)], {i, lon}]; aux] a[n_] := GCD[lcm[n], n]; Table[a[n], {n, 1, 300}]
PROG
(PARI) a(n)=gcd(n, lcm(apply(p->p-1, factor(n)[, 1]))) \\ Andrew Howroyd, Aug 06 2018
CROSSREFS
Cf. A173614.
Sequence in context: A327403 A247371 A331177 * A126864 A348928 A124766
KEYWORD
nonn
AUTHOR
STATUS
approved