login
Even numbers that are not the sum of 2 Ramanujan primes (A104272).
5

%I #13 Feb 16 2017 03:28:57

%S 2,6,8,10,12,14,16,18,20,24,26,30,32,36,38,42,44,48,50,54,56,60,62,66,

%T 68,72,74,80,86,90,92,98,102,104,110,116,120,122,128,132,140,146,150,

%U 152,158,170,176,182,188,200,206,212,230,232,236,242,260,266,272,284,290,314,320,344,350,372,386,398,424,428,452,484,512,542,556,564,572,626,632,644,686,692,764,962,986,1022,1028,1070,1532,1712,1742,1766,2078,2582,2624

%N Even numbers that are not the sum of 2 Ramanujan primes (A104272).

%C No other terms < 2*10^8. Conjectured to be complete.

%C a(n) = 2*(n of A204814) when a204814(n) = 0. Related to Goldbach's conjecture in that (Conjecture:) even numbers 2626 and greater are the sum of two Ramanujan primes. - _John W. Nicholson_, Jan 26 2017

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanPrime.html">Ramanujan Prime</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Ramanujan_prime">Ramanujan prime</a>

%e 68 is a term because no 2 Ramanujan primes sum to 68. 70 is not a term because 11 + 59 = 70. 11 and 59 are both Ramanujan primes.

%Y Cf. A104272.

%K nonn

%O 1,1

%A _Donovan Johnson_, Nov 23 2010