login
A173628
Primes p such that p^3 + 6, p^3 + 12 and p^3 + 18 are all prime.
2
2351, 6991, 49451, 193751, 223781, 769781, 771431, 779341, 880211, 903871, 1064411, 1066231, 1383191, 1447151, 1745621, 1898371, 1974551, 1999511, 2015411, 2025421, 2435831, 2476421, 2695831, 2805911, 3531041, 3679121
OFFSET
1,1
COMMENTS
All terms == 1 (mod 10). - Robert Israel, Mar 18 2020
LINKS
MAPLE
filter:= t -> andmap(isprime, [t, t^3+6, t^3+12, t^3+18]):
select(filter, [seq(i, i=1..10^7, 10); # Robert Israel, Mar 18 2020
MATHEMATICA
Select[Prime[Range[300000]], AllTrue[#^3+{6, 12, 18}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 28 2019 *)
PROG
(Magma) [p: p in PrimesUpTo(1000000)|IsPrime(p^3+6) and IsPrime(p^3+12) and IsPrime(p^3+18)] // Vincenzo Librandi, Dec 13 2010
CROSSREFS
Cf. A173627 (p, p^2+6, p^2+12 and p^2+18 are all prime).
Sequence in context: A198047 A179137 A003552 * A130023 A219192 A234078
KEYWORD
nonn
AUTHOR
Zak Seidov, Nov 09 2010
STATUS
approved