login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173591 T(n, k) = k^n*U(n, (1/k - k)/2) + (n + 1)^(k - 1)*U(k - 1, (1/(n + 1) - n - 1)/2), where U(n,x) is the n-th Chebyshev polynomial of the second kind, square array read by antidiagonals (n >= 0, k >= 1). 2
2, 1, 1, 0, -6, 0, 1, -3, -3, 1, 2, -18, 110, -18, 2, 1, -35, -159, -159, -35, 1, 0, 10, 3000, -5790, 3000, 10, 0, 1, -139, -15091, 27457, 27457, -15091, -139, 1, 2, 30, 110454, -595250, 578402, -595250, 110454, 30, 2, 1, 5, -715167, 7576241, -5255603, 7576241, -715167, 5, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..53.

FORMULA

Let b(n,k) = (k^n)*U(n, (1/k - k)/2). Then T(n,k) = b(n,k) + b(k-1,n+1).

EXAMPLE

Square array begins:

  n\k | 1    2      3       4         5          6 ...

  ----------------------------------------------------

    0 | 2    1      0       1         2          1 ...

    1 | 1   -6     -3     -18       -35         10 ...

    2 | 0   -3    110    -159      3000     -15091 ...

    3 | 1  -18   -159   -5790     27457    -595250 ...

    4 | 2  -35   3000   27457    578402   -5255603 ...

    5 | 1   10 -15091 -595250  -5255603  -92967910 ...

    6 | 0 -139 110454 7576241 156747480 1344158389 ...

    ...

MATHEMATICA

p[x_, q_] = 1/(x^2 - (1/q - q)*x + 1);

a = Table[Table[n^m*SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 1, 21}];

b = (a + Transpose[a]);

Flatten[Table[Table[b[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]]

PROG

(Maxima)

T(n, k) := k^n*chebyshev_u(n, (1/k - k)/2) + (n + 1)^(k - 1)*chebyshev_u(k - 1, (1/(n + 1) - n - 1)/2)$

create_list(T(n - k + 1, k), n, 0, 12, k, 1, n + 1);

/* Franck Maminirina Ramaharo, Jan 24 2019 */

CROSSREFS

Cf. A173588, A173590.

Sequence in context: A238802 A229892 A064879 * A343320 A156603 A156612

Adjacent sequences:  A173588 A173589 A173590 * A173592 A173593 A173594

KEYWORD

sign,easy,tabl

AUTHOR

Roger L. Bagula, Feb 22 2010

EXTENSIONS

Edited by Franck Maminirina Ramaharo, Jan 24 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 10:30 EDT 2021. Contains 343112 sequences. (Running on oeis4.)