login
Integers whose binary representation contains exactly three 1's, no two 1's being adjacent.
2

%I #11 Sep 20 2018 13:40:30

%S 21,37,41,42,69,73,74,81,82,84,133,137,138,145,146,148,161,162,164,

%T 168,261,265,266,273,274,276,289,290,292,296,321,322,324,328,336,517,

%U 521,522,529,530,532,545,546,548,552,577,578,580,584,592,641,642,644,648

%N Integers whose binary representation contains exactly three 1's, no two 1's being adjacent.

%C Subsequence of A014311. [_R. J. Mathar_, Feb 24 2010]

%C A000120(a(n))=3; A023416(a(n))>1; 1 < A087116(a(n))<=3. [_Reinhard Zumkeller_, Mar 11 2010]

%H Robert Israel, <a href="/A173589/b173589.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 21 = 10101_2.

%e a(2) = 37 = 100101_2.

%e a(3) = 41 = 101001_2.

%p seq(seq(seq(2^a+2^b+2^c, c=0..b-2),b=2..a-2),a=4..10); # _Robert Israel_, Dec 19 2016

%t e31sQ[n_]:=Module[{idn2=IntegerDigits[n,2]},Total[idn2]==3 && SequenceCount[ idn2,{1,1}]==0]; Select[Range[700],e31sQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Sep 20 2018 *)

%Y Cf. A000120, A014311, A023416, A087116.

%K base,nonn

%O 1,1

%A David Koslicki (koslicki(AT)math.psu.edu), Feb 22 2010

%E More terms from _R. J. Mathar_, Feb 24 2010