This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173585 A q-form product triangle based on:q=3;a(n, q)= (Sum[(1 + (-1)^n)*Binomial[n, m]*(1 + Sqrt[q])^m, {m, 1, n}] + Sum[(1 + (-1)^n)*Binomial[n, m]*(1 - Sqrt[q])^m, {m, 1, n}])/4 0
 1, 1, 1, 1, 16, 1, 1, 225, 225, 1, 1, 3136, 44100, 3136, 1, 1, 43681, 8561476, 8561476, 43681, 1, 1, 608400, 1660970025, 23150231104, 1660970025, 608400, 1, 1, 8473921, 322220846025, 62555239000969, 62555239000969, 322220846025, 8473921, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 18, 452, 50374, 17210316, 26473387956, 125754936641832, 2692503748294554438, 178119744099983099364620, 53115099293451187427426853340,...}. Most of these triangles are rational. LINKS FORMULA q=2;a(n, q)=(Sum[(1 + (-1)^n)*Binomial[n, m]*(1 + Sqrt[q])^m, {m, 1, n}] + Sum[(1 + (-1)^n)*Binomial[n, m]*(1 - Sqrt[q])^m, {m, 1, n}])/4; c(n,q)=Product[a(k, q), {k, 2, n, 2}]; t(n,m,q)=c(n, q)/(c(m, q)*c(n - m, q)) EXAMPLE {1}, {1, 1}, {1, 16, 1}, {1, 225, 225, 1}, {1, 3136, 44100, 3136, 1}, {1, 43681, 8561476, 8561476, 43681, 1}, {1, 608400, 1660970025, 23150231104, 1660970025, 608400, 1}, {1, 8473921, 322220846025, 62555239000969, 62555239000969, 322220846025, 8473921, 1}, {1, 118026496, 62509200188176, 169024877308827904, 2354328975040469284, 169024877308827904, 62509200188176, 118026496, 1}, {1, 1643897025, 12126462852848400, 456705280997653184784, 88603154642529399752100, 88603154642529399752100, 456705280997653184784, 12126462852848400, 1643897025, 1}, {1, 22896531856, 2352471287556008025, 1234017524492640137505024, 3334492032897384440894996964, 46443647187902490644456769600, 3334492032897384440894996964, 1234017524492640137505024, 2352471287556008025, 22896531856, 1} MATHEMATICA a[n_, q_] := (Sum[(1 + (-1)^n)*Binomial[n, m]*(1 + Sqrt[q])^m, {m, 1, n}] + Sum[(1 + (-1)^n)*Binomial[n, m]*(1 - Sqrt[q])^m, {m, 1, n}])/4; c[n_, q_] := Product[a[k, q], {k, 2, n, 2}]; t[n_, m_, q_] := c[n, q]/(c[m, q]*c[n - m, q]); Table[Table[Table[t[n, m, q], {m, 0, n, 2}], {n, 0, 20, 2}], {q, 1, 10}]; Table[Flatten[ Table[Table[t[n, m, q], {m, 0, n, 2}], {n, 0, 20, 2}]], {q, 1, 10}] CROSSREFS Sequence in context: A142462 A203397 A173885 * A022179 A015141 A176390 Adjacent sequences:  A173582 A173583 A173584 * A173586 A173587 A173588 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Feb 22 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 00:52 EDT 2018. Contains 313902 sequences. (Running on oeis4.)