login
A173534
a(n)=a(n-1)+2*a(n-2)-[a(n-1)/2]-[a(n-4)/2]-[a(n-5)/2].
0
1, 1, 3, 4, 8, 12, 21, 32, 52, 80, 128, 198, 313, 487, 766, 1194, 1874, 2926, 4585, 7165, 11219, 17540, 27453, 42933, 67182, 105078, 164407, 257168, 402341, 629377, 984629
OFFSET
0,3
COMMENTS
The limiting ratio a(n+1)/a(n) is:1.564378648884
FORMULA
a(n)=a(n-1)+2*a(n-2)-Floor[a(n-1)/2]-Floor[a(n-4)/2]-Floor[a(n-5)/2]
MATHEMATICA
a[-3] = 0; a[-2] = 0; a[-1] = 0; a[0] = 1; a[1] = 1;
a[n_] := a[n] =
a[n - 1] + 2*a[n - 2] - Floor[a[n - 1]/2] - Floor[a[n - 4]/2] -
Floor[a[n - 5]/2]
Table[a[n], {n, 0, 30}]
CROSSREFS
Sequence in context: A025034 A145722 A147622 * A074331 A052952 A245121
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 23 2010
STATUS
approved