%I
%S 1,2,3,4,5,6,7,8,2,3,4,5,6,7,8,9,3,4,5,6,7,8,9,10,4,5,6,7,8,9,10,11,5,
%T 6,7,8,9,10,11,12,6,7,8,9,10,11,12,13,7,8,9,10,11,12,13,14,8,9,10,11,
%U 12,13,14,15,2,3,4,5,6,7,8,9,3,4,5,6,7,8,9,10,4,5,6,7,8,9,10,11
%N a(n) = 1 + sum of digits of n1 written in base 8.
%C If A053829 is written as a triangle then the rows converge to this sequence; see the conjecture in A000120.
%C The sequence is the base b=8 case in a family of 8 sequences for base b=2 (A063787) and bases 3 to 9 (A173523 to A173529). Common aspects (recurrences etc.) of these are documented in A173525.
%H Robert Walker, <a href="http://robertinventor.com/ftswiki/Self_Similar_Sloth_Canon_Number_Sequences">Self Similar Sloth Canon Number Sequences</a>
%F a(n) = A053829(n1)+1.
%o (MAGMA) a053829:=func< n  &+Intseq(n, 8) >; a173528:=func< n  a053829(n1)+1 >; [ a173528(n): n in [1..90] ]; // _Klaus Brockhaus_, Dec 07 2010
%o (Sage) A173528 = lambda n: 1+sum((n1).digits(base=8)) # _D. S. McNeil_, Dec 07 2010
%Y Cf. A000120, A053829, A063787, A173523  A173529.
%K nonn,base
%O 1,2
%A _Omar E. Pol_, Feb 20 2010
%E More terms from _Vincenzo Librandi_, Feb 21 2010
%E Definition and formula added by _M. F. Hasler_, Dec 06 2010
