login
a(n) = 4*n^2 + floor(n/2).
7

%I #31 Apr 24 2024 17:20:50

%S 0,4,17,37,66,102,147,199,260,328,405,489,582,682,791,907,1032,1164,

%T 1305,1453,1610,1774,1947,2127,2316,2512,2717,2929,3150,3378,3615,

%U 3859,4112,4372,4641,4917,5202,5494,5795,6103,6420,6744,7077,7417,7766,8122

%N a(n) = 4*n^2 + floor(n/2).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F a(n) = floor((2*n + 1/8)^2).

%F a(n+1) - a(n) = A173512(n).

%F a(n) = A002943(n) - A007494(n) = A007742(n) - A110654(n).

%F a(2*n) = A157474(n) for n>0.

%F From - _R. J. Mathar_, Feb 21 2010: (Start)

%F a(n)= 2*a(n-1) -2*a(n-3) +a(n-4).

%F G.f.: -x*(4+9*x+3*x^2)/((1+x)*(x-1)^3). (End)

%F E.g.f.: (x*(8*x + 9)*cosh(x) + (8*x^2 + 9*x - 1)*sinh(x))/2. - _Stefano Spezia_, Apr 24 2024

%e a(6) = 147; 4(6)^2 + floor(6/3) = 144 + 3 = 147.

%p A173511:=n->4*n^2 + floor(n/2); seq(A173511(k), k=0..100); # _Wesley Ivan Hurt_, Nov 01 2013

%t Table[4n^2 + Floor[n/2], {n,0,100}] (* _Wesley Ivan Hurt_, Nov 01 2013 *)

%t LinearRecurrence[{2,0,-2,1},{0,4,17,37},50] (* _Harvey P. Dale_, Nov 23 2019 *)

%o (PARI) a(n) = 4*n^2 + n\2 \\ _Charles R Greathouse IV_, Jun 11 2015

%o (Python)

%o def A173511(n): return (n**2<<2)+(n>>1) # _Chai Wah Wu_, Jan 18 2023

%Y Cf. A002943, A007494, A007742, A110654, A157474, A173512.

%K nonn,easy

%O 0,2

%A _Reinhard Zumkeller_, Feb 20 2010