This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173440 Number of divisors d of number n such that sigma(d) does not divide sigma(n). 2
 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 1, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 6, 1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 6, 0, 0, 2, 2, 0, 0, 0, 5, 3, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 1, 0, 0, 0, 4, 0, 2, 1, 5, 0, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 COMMENTS a(n) = A000005(n) - A173439(n). a(n) = 0 for squarefree numbers (A005117). LINKS Antti Karttunen, Table of n, a(n) for n = 1..16384 EXAMPLE For n = 12: a(12) = 2; sigma(12) = 28, divisors of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d):1, 3, 4, 7, 12, 28; sigma(d) does not divide sigma(n) for 2 divisors d: 2 and 6. MATHEMATICA Table[DivisorSum[n, 1 &, ! Divisible[DivisorSigma[1, n], DivisorSigma[1, #]] &], {n, 105}] (* Michael De Vlieger, Nov 23 2017 *) PROG (PARI) A173439(n) = { my(s=sigma(n)); sumdiv(n, d, !(s%sigma(d))); }; A173440(n) = (numdiv(n) - A173439(n)); \\ Antti Karttunen, Nov 23 2017 (Sage) A173440 = lambda n: len([d for d in divisors(n) if not sigma(d).divides(sigma(n))]) # D. S. McNeil, Dec 08 2010 CROSSREFS Cf. A000005, A000203, A005117, A173439. Sequence in context: A321374 A262889 A083059 * A284687 A046268 A202425 Adjacent sequences:  A173437 A173438 A173439 * A173441 A173442 A173443 KEYWORD nonn AUTHOR Jaroslav Krizek, Feb 18 2010 EXTENSIONS Edited and extended by D. S. McNeil, Dec 08 2010 More terms from Antti Karttunen, Nov 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 05:43 EDT 2019. Contains 328026 sequences. (Running on oeis4.)