login
A173435
Inverse binomial transform of A143025, assuming offset zero there.
0
8, -6, 12, -25, 52, -106, 212, -420, 832, -1656, 3312, -6640, 13312, -26656, 53312, -106560, 212992, -425856, 851712, -1703680, 3407872, -6816256, 13632512, -27264000, 54525952, -109049856, 218099712, -436203520, 872415232, -1744838656, 3489677312, -6979338240
OFFSET
0,1
COMMENTS
Inverse binomial transform of 8, 2, 8, 1, 8, 2 ,8, 1,... with a(0)=8, a(1)=2 etc.
FORMULA
a(n)= -4*a(n-1) -6*a(n-2) -4*a(n-3), n>3. G.f.: (26*x+36*x^2+19*x^3+8)/( (2*x+1) * (2*x^2+2*x+1)). [R. J. Mathar, Mar 10 2010]
a(n+1) +2*a(n) = (-1)^(n+1)*A009545(n-1), n > 0.
MATHEMATICA
Join[{8}, LinearRecurrence[{-4, -6, -4}, {-6, 12, -25}, 40]] (* Harvey P. Dale, Sep 25 2013 *)
CROSSREFS
Sequence in context: A034085 A303316 A340518 * A184728 A119876 A281718
KEYWORD
sign
AUTHOR
Paul Curtz, Feb 18 2010
EXTENSIONS
Extended by R. J. Mathar, Mar 10 2010
STATUS
approved