login
A173403
Inverse binomial transform of A002416.
5
1, 1, 13, 469, 63577, 33231721, 68519123173, 562469619451069, 18442242396353040817, 2417685638793025070212561, 1267626422541873052658376446653, 2658442047546208031914776455678477989, 22300713297142388711251601783864453690641417
OFFSET
0,3
COMMENTS
a(n) is the number of n X n matrices of 0's and 1's with the property that there is no index k such that both the k-th column and the k-th row consist of all zeros.
a(n) is the number of binary relations on n labeled vertices with no vertex of indegree and outdegree = 0. - Geoffrey Critzer, Oct 02 2012
REFERENCES
E. A. Bender and S. G. Williamson, Foundations of Combinatorics with Applications, Dover, 2005, exercise 4.1.6.
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*2^((n-k)^2).
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Oct 30 2017
MAPLE
N:=8: seq( sum(binomial(n, i)*2^((n-i)^2)*(-1)^(i), i=0..n), n=0..N);
MATHEMATICA
Table[Sum[(-1)^k Binomial[n, k] 2^(n-k)^2, {k, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Oct 02 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Brian Drake, Feb 17 2010
STATUS
approved