login
A173307
a(n) = 13*n*(n+1).
2
0, 26, 78, 156, 260, 390, 546, 728, 936, 1170, 1430, 1716, 2028, 2366, 2730, 3120, 3536, 3978, 4446, 4940, 5460, 6006, 6578, 7176, 7800, 8450, 9126, 9828, 10556, 11310, 12090, 12896, 13728, 14586, 15470, 16380, 17316, 18278, 19266, 20280, 21320, 22386, 23478
OFFSET
0,2
FORMULA
a(n) = 26 * A000217(n).
G.f.: 26*x/(1-x)^3. - Vincenzo Librandi, Sep 28 2013
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Sep 28 2013
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/13.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/13.
Product_{n>=1} (1 - 1/a(n)) = -(13/Pi)*cos(sqrt(17/13)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (13/Pi)*cos(3*Pi/(2*sqrt(13))). (End)
MATHEMATICA
Table[13 n (n + 1), {n, 0, 50}] (* or *) CoefficientList[Series[26 x/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 28 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 26, 78}, 50] (* Harvey P. Dale, Apr 08 2014 *)
PROG
(Magma) [13*n*(n+1): n in [0..40]]; /* or */ I:=[0, 26, 78]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 28 2013
(PARI) a(n)=13*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A124719 A126380 A083578 * A042326 A042328 A042330
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 16 2010
EXTENSIONS
Incorrect formulas and examples deleted by R. J. Mathar, Jan 04 2011
STATUS
approved