OFFSET
0,3
COMMENTS
The partition numbers have an apparent fractal-like structure starting with every term in A173301.
Let A000041 = row 0, then under every (2^n - 1)-th term, begin a new row with the partition numbers; then take finite differences of each column from below.
The sum of finite difference terms will reproduce the partition numbers, with finite difference rows (starting from the top going down) = number of partitions of n that do not contain (1, 2, 3,...). (Cf. the array shown in A173302).
REFERENCES
Refer to tables of the partition numbers.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..19
FORMULA
a(n) = A000041(2^n - 1), n = (0, 1, 2,...).
MATHEMATICA
Table[PartitionsP[2^n - 1], {n, 0 , 10}] (* Amiram Eldar, Feb 26 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Feb 15 2010
STATUS
approved