login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173293 Antidiagonal expansion of rational polynomial with factors: p(x,n) = If[n == 0, 1/(1 - x), x*ChebyshevU[n, x]/ChebyshevT[n + 1, x]]. 0

%I

%S 1,1,0,1,0,1,1,-16,0,0,1,0,-24,0,1,1,-128,0,-256,0,0,1,0,-288,0,-200,

%T 0,1,1,-1024,0,-24576,0,-1296,0,0,1,0,-3456,0,-12000,0,-784,0,1,1,

%U -8192,0,-2621440,0,-590976,0,-4096,0,0

%N Antidiagonal expansion of rational polynomial with factors: p(x,n) = If[n == 0, 1/(1 - x), x*ChebyshevU[n, x]/ChebyshevT[n + 1, x]].

%C Row sums are {1, 1, 2, -15, -22, -383, -486, -26895, -16238, -3224703, ...}.

%C The rational function here is associated with tan(n*arctan(x)).

%F p(x,n) = If[n == 0, 1/(1 - x), x*ChebyshevU[n, x]/ChebyshevT[n + 1, x]];

%F a(n,m) = (n+1)^m*expansion(p(x,n));

%F t(n,m) = antidiagonal(t(n,m)).

%e {1},

%e {1, 0},

%e {1, 0, 1},

%e {1, -16, 0, 0},

%e {1, 0, -24, 0, 1},

%e {1, -128, 0, -256, 0, 0},

%e {1, 0, -288, 0, -200, 0, 1},

%e {1, -1024, 0, -24576, 0, -1296, 0, 0},

%e {1, 0, -3456, 0, -12000, 0, -784, 0, 1},

%e {1, -8192, 0, -2621440, 0, -590976, 0, -4096, 0, 0}

%t p[x_, n_] = If[n == 0, 1/(1 - x), x*ChebyshevU[n, x]/ChebyshevT[n + 1, x]];

%t a = Table[Table[(n + 1)^(m + 1)*SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], { m, 0, 20}], {n, 0, 20}];

%t Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];

%t Flatten[%]

%K sign,tabl,uned

%O 0,8

%A _Roger L. Bagula_, Feb 15 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 01:08 EST 2017. Contains 295936 sequences.