The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173286 2*prime(prime(prime(n)))-3 and 3*prime(prime(prime(n)))-2 are both primes. 1
 1, 2, 5, 8, 9, 15, 26, 53, 63, 86, 92, 93, 95, 116, 137, 152, 233, 254, 281, 303, 329, 334, 352, 386, 392, 415, 423, 460, 470, 476, 508, 565, 570, 601, 660, 673, 680, 725, 748, 898, 907, 942, 948, 952, 958, 1045, 1119, 1126, 1138, 1140, 1259, 1314, 1360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE a(1) = 1 because 2*p(p(p(1)))-3 = 7 = prime and 3*p(p(p(1)))-2 = 13 = prime; a(2) = 2 because 2*p(p(p(2)))-3 = 19 = prime and 3*p(p(p(2)))-2 = 31 = prime; a(3) = 5 because 2*p(p(p(5)))-3 = 379 = prime and 3*p(p(p(5)))-2 = 251 = prime; a(4) = 8 because 2*p(p(p(8)))-3 = 991 = prime and 3*p(p(p(8)))-2 = 659 = prime; a(5) = 9 because 2*p(p(p(9)))-3 = 1291 = prime and 3*p(p(p(9)))-2 = 859 = prime; a(6) = 15 because 2*p(p(p(15)))-3 = 3889 = prime and 3*p(p(p(15)))-2 = 2591 = prime. MATHEMATICA pppQ[n_]:=Module[{p=Prime[Prime[Prime[n]]]}, AllTrue[{2p-3, 3p-2}, PrimeQ]]; Select[Range[1400], pppQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 25 2016 *) PROG (PARI) isok(n) = isprime(2*prime(prime(prime(n)))-3) && isprime(3*prime(prime(prime(n)))-2); \\ Michel Marcus, Sep 02 2013 CROSSREFS Cf. A038580, A063908, A088878. Sequence in context: A032684 A026448 A258353 * A243182 A088620 A068702 Adjacent sequences: A173283 A173284 A173285 * A173287 A173288 A173289 KEYWORD nonn AUTHOR Juri-Stepan Gerasimov, Feb 15 2010 EXTENSIONS Extended beyond 15 by R. J. Mathar, Mar 01 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 17:08 EST 2023. Contains 359895 sequences. (Running on oeis4.)