login
A173284
Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.
5
1, 1, 2, 1, 3, 1, 5, 2, 1, 8, 3, 1, 13, 5, 2, 21, 8, 3, 1, 34, 13, 5, 2, 1, 55, 21, 8, 3, 1, 89, 34, 13, 5, 2, 1, 144, 55, 21, 8, 3, 1, 233, 89, 34, 13, 5, 2, 1, 377, 144, 55, 21, 8, 3, 1, 610, 233, 89, 34, 13, 5, 2, 1
OFFSET
0,3
COMMENTS
The row sums equal A052952.
Let the triangle = M. Then lim_{n->infinity} M^n = A173285 as a left-shifted vector.
A173284 * [1, 2, 3, ...] = A054451: (1, 1, 4, 5, 12, 17, 33, ...). - Gary W. Adamson, Mar 03 2010
From Johannes W. Meijer, Sep 05 2013: (Start)
Triangle read by rows formed from antidiagonals of triangle A104762.
The diagonal sums lead to A004695. (end)
FORMULA
Triangle by columns, Fibonacci numbers in every column shifted down twice, for k > 0.
From Johannes W. Meijer, Sep 05 2013: (Start)
T(n,k) = A000045(n-2*k+1), n >= 0 and 0 <= k <= floor(n/2).
T(n,k) = A104762(n-k, k). (End)
EXAMPLE
First few rows of the triangle:
1;
1;
2, 1;
3, 1;
5, 2, 1;
8, 3, 1;
13, 5, 2, 1;
21, 8, 3, 1;
34, 13, 5, 2, 1;
55, 21, 8, 3, 1;
89, 34, 13, 5, 2, 1;
144, 55, 21, 8, 3, 1;
233, 89, 34, 13, 5, 2, 1;
377, 144, 55, 21, 8, 3, 1;
610, 233, 89, 34, 13, 5, 2, 1;
...
MAPLE
T := proc(n, k): if n<0 then return(0) elif k < 0 or k > floor(n/2) then return(0) else combinat[fibonacci](n-2*k+1) fi: end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..14); # Johannes W. Meijer, Sep 05 2013
CROSSREFS
Cf. (Similar triangles) A008315 (Catalan), A011973 (Pascal), A102541 (Losanitsch), A122196 (Fractal), A122197 (Fractal), A128099 (Pell-Jacobsthal), A152198, A152204, A207538, A209634.
Sequence in context: A147486 A168018 A173238 * A278136 A085053 A296118
KEYWORD
nonn,tabf
AUTHOR
Gary W. Adamson, Feb 14 2010
EXTENSIONS
Term a(15) corrected by Johannes W. Meijer, Sep 05 2013
STATUS
approved