This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173241 Euler transform of A051064, the ruler function sequence for k=3. 3
 1, 1, 2, 4, 6, 9, 16, 22, 33, 51, 71, 100, 147, 199, 275, 384, 515, 692, 944, 1242, 1645, 2186, 2847, 3706, 4848, 6231, 8019, 10330, 13153, 16729, 21305, 26864, 33858, 42658, 53366, 66668, 83277, 103378, 128200, 158846, 195895, 241237, 296860, 363796, 445285, 544465, 663520 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Let P(x) = polcoeff A000041: (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...) and A(x) = polcoeff A173241: (1 + x + 2x^2 + 4x^3 + 6x^4 + 9x^5 + ...); then P(x) = A(x) / A(x^3). A092119 = Euler transform of the ruler function for k=2: A001511. LINKS FORMULA G.f.: 1/Product_{k>=0} P(x^(3^k)) where P(x)=Product_{k>=1} (1-x^k). - Joerg Arndt, Jun 21 2011 Euler transform of A051064, where A051064 = the ruler function for k=3: (1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, ...). EXAMPLE Equals 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^7)*...); where in (1-x)^k, k = A051064: (1, 1, 2, 1, 1, 2, 1, 1, 3, ...). PROG (PARI)  N=66; x='x+O('x^N); /* that many terms */ gf=1/prod(e=0, ceil(log(N)/log(3)), eta(x^(3^e))); Vec(gf) /* show terms */ /* Joerg Arndt, Jun 21 2011 */ CROSSREFS Cf. A000041, A001511, A051064, A092119, A173238, A173239. Sequence in context: A226007 A257655 A318026 * A096398 A110538 A288039 Adjacent sequences:  A173238 A173239 A173240 * A173242 A173243 A173244 KEYWORD nonn AUTHOR Gary W. Adamson, Feb 13 2010 EXTENSIONS More terms from Joerg Arndt, Jun 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 06:56 EDT 2019. Contains 328335 sequences. (Running on oeis4.)