login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173138 Composite numbers n such that 2^(n-4) == 1 (mod n). 3
4, 40369, 673663, 990409, 1697609, 2073127, 6462649, 7527199, 7559479, 14421169, 21484129, 37825753, 5723304, 130647919, 141735559, 179203369, 188967289, 218206489, 259195009, 264538057, 277628449, 330662479, 398321239 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Besides the initial term, the sequence coincides with A033984 and consists of the odd terms >7 of A015924.

REFERENCES

A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.

LINKS

Table of n, a(n) for n=1..23.

EXAMPLE

For n = 4, 2^(4 - 4) = 1 (mod 4).

MAPLE

with(numtheory): for n from 1 to 100000000 do: a:= 2^(n-4)- 1; b:= a / n; c:= floor(b): if b = c and tau(n) <> 2 then print (n); else fi; od:

MATHEMATICA

Select[Range[500000000], !PrimeQ[#]&&PowerMod[2, #-4, #]==1&] (* Harvey P. Dale, Nov 23 2011 *)

PROG

(PARI) is(n)=!isprime(n) && n>1 && Mod(2, n)^(n-4)==1 \\ Charles R Greathouse IV, Nov 23 2011

CROSSREFS

Cf. A002808, A005381, A033984

Sequence in context: A001376 A053937 A259160 * A275587 A132638 A046882

Adjacent sequences:  A173135 A173136 A173137 * A173139 A173140 A173141

KEYWORD

nonn

AUTHOR

Michel Lagneau, Feb 10 2010

EXTENSIONS

Simplified the definition, added cross-reference to A033984 R. J. Mathar, May 18 2010

More terms from Harvey P. Dale, Nov 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:27 EST 2017. Contains 295089 sequences.