login
a(n) = sinh((2n-1)*arcsinh(3)).
14

%I #21 Mar 11 2024 07:10:20

%S -3,3,117,4443,168717,6406803,243289797,9238605483,350823718557,

%T 13322062699683,505887558869397,19210405174337403,729489509065951917,

%U 27701390939331835443,1051923366185543794917,39945386524111332371403

%N a(n) = sinh((2n-1)*arcsinh(3)).

%C Numbers n such that ((n^2 + 1)/10) is a square. - _Vincenzo Librandi_, Jan 02 2012

%H Vincenzo Librandi, <a href="/A173127/b173127.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (38,-1).

%F a(n) = (1/2)*((-3+sqrt(10))*(19+6*sqrt(10))^n + (-3-sqrt(10))*(19-6*sqrt(10))^n).

%F a(n) = -a(-n+1).

%F G.f.: -3*(1-39*x)/(1-38*x+x^2). - _Bruno Berselli_, Jan 03 2011

%t LinearRecurrence[{38,-1},{-3,3},30] (* _Harvey P. Dale_, Jan 14 2015 *)

%o (Magma) [-3],[n: n in [0..10^7]|IsSquare((n^2+1)/10)]; // _Vincenzo Librandi_, Jan 02 2012

%Y Cf. A058331 A001079, A037270, A071253, A108741, A132592, A146311-A146313, A173115, A173116, A173121.

%K sign,easy

%O 0,1

%A _Artur Jasinski_, Feb 10 2010