login
a(n) = sinh(2*arcsinh(n))^2 = 4*n^2*(n^2 + 1).
19

%I #36 Oct 25 2024 07:24:36

%S 0,8,80,360,1088,2600,5328,9800,16640,26568,40400,59048,83520,114920,

%T 154448,203400,263168,335240,421200,522728,641600,779688,938960,

%U 1121480,1329408,1565000,1830608,2128680,2461760,2832488,3243600

%N a(n) = sinh(2*arcsinh(n))^2 = 4*n^2*(n^2 + 1).

%H Vincenzo Librandi, <a href="/A173116/b173116.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = 4*A071253(n) = 8*A037270(n).

%F G.f.: 8*x*(1 + 5*x + 5*x^2 + x^3)/(1 - x)^5. - _Colin Barker_, Jan 08 2012

%F E.g.f.: 4*x*(2 + 8*x + 6*x^2 + x^3)*exp(x). - _Michael Somos_, Jul 05 2018

%F a(n) = a(-n) = (2*n)^2 + (2*n^2)^2 = (2*n^2 + 1)^2 - 1. - _Michael Somos_, Jul 05 2018

%F From _Amiram Eldar_, Oct 25 2024: (Start)

%F Sum_{n>=1} 1/a(n) = Pi^2/24 + (1-Pi*coth(Pi))/8.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/48 + (Pi*cosech(Pi)-1)/8. (End)

%e G.f. = 8*x + 80*x^2 + 360*x^3 + 1088*x^4 + 2600*x^5 + 5328*x^6 + 9800*x^7 + ... - _Michael Somos_, Jul 05 2018

%t Table[4*n^2*(n^2 + 1), {n, 0, 30}] (* OR *)

%t Table[Round[N[Sinh[2 ArcSinh[n]]^2, 100]], {n, 0, 30}]

%t a[ n_] := TrigExpand @ Sinh[ 2 ArcSinh @ n]^2; (* _Michael Somos_, Jul 05 2018 *)

%o (Magma) [4*n^2*(n^2+1): n in [0..40]]; // _Vincenzo Librandi_, Jun 15 2011

%o (PARI) a(n)=4*n^2*(n^2+1) \\ _Charles R Greathouse IV_, Apr 17 2012

%o (PARI) a(n)=8*binomial(n^2+1,2) \\ _Charles R Greathouse IV_, Apr 17 2012

%Y Cf. A001079, A037270, A071253, A108741, A132592, A146311, A146312, A146313, A173115, A173121.

%K nonn,easy,changed

%O 0,2

%A _Artur Jasinski_, Feb 10 2010

%E Name corrected by _Jianing Song_, Nov 23 2018