login
A173114
a(0)=a(1)=1, a(n) = 2*a(n-1)- A010686(n), n>1.
2
1, 1, 1, -3, -7, -19, -39, -83, -167, -339, -679, -1363, -2727, -5459, -10919, -21843, -43687, -87379, -174759, -349523, -699047, -1398099, -2796199, -5592403, -11184807, -22369619, -44739239, -89478483, -178956967, -357913939, -715827879, -1431655763
OFFSET
0,4
COMMENTS
The sequence in the first row and successive differences in followup rows defines the array
1, 1, 1, -3, -7, -19, -39, -83, -167, -339,..
0, 0, -4, -4, -12, -20, -44, -84, -172, -340,..
0, -4, 0, -8, -8, -24, -40, -88, -168, -344,..
-4, 4, -8, 0, -16, -16, -48, -80, -176, -336,..
8, -12, 8, -16, 0, -32, -32, -96, -160, -352, ..
The first two subdiagonals show essentially the powers of 2.
FORMULA
a(n) = 3+ 2*( (-1)^n-2^n )/3 = 3-A078008(n+1), n>0. [R. J. Mathar, Jun 30 2010]
a(n+2)-a(n)= A154589(n+2) = -2^(n+1), n>0.
a(n)= 2*a(n-1)+a(n-2)-2*a(n-3), n>3.
G.f.: (-x-2*x^2-4*x^3+1)/( (1-x)*(1-2*x)*(1+x) ).
a(n) + A173078(n) = 2^n.
a(n) - a(n-1) = -4*A001045(n-2) = -A097074(n-1), n>1.
CROSSREFS
Sequence in context: A222465 A239416 A281866 * A163572 A292775 A282024
KEYWORD
easy,sign
AUTHOR
Paul Curtz, Feb 10 2010
EXTENSIONS
Edited and extended by R. J. Mathar, Jun 30 2010
STATUS
approved