%I #3 Apr 03 2023 10:36:11
%S 10153331,20326464,30559685,40871218,51193539,63296870,75460003,
%T 87623334,99816467,112128400,124441719,139544852,154778073,170089706,
%U 185421637,200754756,216907889,233061220,249234353,265565884,281897715
%N Partial sums of A108810.
%C Partial sums of self-describing primes, where the digits are described in any order, whereas in A047841 they must be described in increasing order. The subsequence of prime partial sums of self-describing primes begins: 10153331, 75460003. What is the smallest value in the subsubsequence of self-describing prime partial sums of self-describing primes?
%H Jud McCranie, <a href="https://t5k.org/curios/page.php/10153331.html">Prime Curios, Self-describing primes</a>.
%F a(n) = SUM[i=1..n] A108810(i).
%e a(7) = 10153331 + 10173133 + 10233221 + 10311533 + 10322321 + 12103331 + 12163133 = 75460003 is prime. a(21) = 10153331 + 10173133 + 10233221 + 10311533 + 10322321 + 12103331 + 12163133 + 12163331 + 12193133 + 12311933 + 12313319 + 15103133 + 15233221 + 15311633 + 15331931 + 15333119 + 16153133 + 16153331 + 16173133 + 16331531 + 16331831.
%Y Cf. A000040, A047841, A059504, A108810, A109775, A109776.
%K base,nonn
%O 1,1
%A _Jonathan Vos Post_, Feb 09 2010