%I #21 Sep 08 2022 08:45:50
%S 3,5,35,65,275,495,625,695,1085,1155,1885,3145,4335,5215,5245,5355,
%T 6015,6305,6475,7005,7425,8435,10575,11615,14595,17115,18445,20995,
%U 22405,23165,24075,25755,26565,27015,27575,29605,32615,33045,33705,36615,38845,39765,40735,45155,48055,52425
%N Numbers k such that 3k-4, 3k-2, 3k+2, and 3k+4 are primes.
%F a(n) = A173037(n)/3.
%e 3 is a term because 3*3-4=5, 3*3-2=7, 3*3+2=11, and 3*3+4=13 are all prime.
%t Select[Range[10^5], PrimeQ[3# - 4]&&PrimeQ[3# - 2] && PrimeQ[3# + 2] && PrimeQ[3# + 4]&] (* _Alonso del Arte_, Dec 04 2010 *)
%o (Magma) [ n: n in [0..60000] | IsPrime(3*n-2) and IsPrime(3*n+2) and IsPrime(3*n-4) and IsPrime(3*n+4) ]; // _Vincenzo Librandi_, Dec 04 2010
%Y Cf. A173037.
%K nonn,less
%O 1,1
%A _Juri-Stepan Gerasimov_, Feb 10 2010, Feb 19 2010
%E Entries checked by _D. S. McNeil_, Nov 26 2010
%E Extended by _Vincenzo Librandi_ and _Charles R Greathouse IV_, Mar 25 2010