login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173089 a(n) = 25*n^2 + n. 3
26, 102, 228, 404, 630, 906, 1232, 1608, 2034, 2510, 3036, 3612, 4238, 4914, 5640, 6416, 7242, 8118, 9044, 10020, 11046, 12122, 13248, 14424, 15650, 16926, 18252, 19628, 21054, 22530, 24056, 25632, 27258, 28934, 30660, 32436, 34262, 36138, 38064, 40040, 42066, 44142, 46268, 48444, 50670, 52946, 55272, 57648 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (5000*n^2 + 200*n + 1)^2 - (25*n^2 + n)*(1000*n + 20)^2 = 1 can be written as A157511(n)^2 - a(n)*A157510(n)^2 = 1. This is the case s=5 of the identity (8*n^2*s^4 + 8*n*s^2 + 1)^2 -(n^2*s^2 + n)*(8*n*s^3 + 4*s)^2 = 1. - Vincenzo Librandi, Feb 04 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Vincenzo Librandi, X^2-AY^2=1

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: x*(-26 - 24*x)/(x-1)^3. - Vincenzo Librandi, Feb 04 2012

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 04 2012

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {26, 102, 228}, 50] (* Vincenzo Librandi, Feb 04 2012 *)

PROG

(MAGMA) [ 25*n^2+n: n in [1..50] ];

(PARI) for(n=1, 40, print1(25*n^2 + n", ")); \\ Vincenzo Librandi, Feb 04 2012

CROSSREFS

Cf. A157510, A157511.

Sequence in context: A136293 A065013 A031434 * A244633 A042320 A042322

Adjacent sequences:  A173086 A173087 A173088 * A173090 A173091 A173092

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Nov 22 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 23:59 EDT 2019. Contains 327207 sequences. (Running on oeis4.)