

A173088


Numbers k such that 6*k  1, 6*k + 1, 6*k + 29, and 6*k + 31 are primes.


1



2, 5, 7, 12, 18, 25, 33, 40, 47, 72, 95, 138, 170, 172, 177, 215, 242, 278, 333, 347, 352, 373, 385, 443, 495, 550, 555, 560, 588, 637, 670, 688, 705, 707, 753, 975, 1045, 1110, 1127, 1243, 1260, 1433, 1495, 1502, 1572, 1668, 1673, 1712, 1717, 1738, 1750, 1810
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers n such that n and n+5 are both in A002822.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000


EXAMPLE

A002822 starts 1,2,3,5,7,10,12,17,18,23,... Hence the first terms are 2 (7 is in A002822), 5 (10 is in A002822), 7 (12 is in A002822), 12 (17 is in A002822), 18 (23 is in A002822).


MAPLE

# From R. J. Mathar, Mar 01 2010: (Start)
isA002822 := proc(n)
if isprime(6*n1) and isprime(6*n+1) then
true;
else
false;
end if;
end proc:
isA173088 := proc(n)
isA002822(n) and isA002822(n+5) ;
end proc:
for n from 1 to 1700 do
if isA173088(n) then
printf("%d, ", n) ;
end if;
end do ; # (End)


MATHEMATICA

Select[Range[2000], And @@ PrimeQ[6*# + {1, 1, 29, 31}] &] (* Amiram Eldar, Jan 01 2020 *)


PROG

(MAGMA) A002822:=[ k: k in [1..3000]  IsPrime(6*k1) and IsPrime(6*k+1) ]; [ p: p in A002822  p+5 in A002822 ]; // Klaus Brockhaus, Mar 01 2010


CROSSREFS

Cf. A002822 (numbers n such that 6*n1, 6*n+1 are twin primes).
Sequence in context: A024924 A023668 A023564 * A005895 A238661 A135525
Adjacent sequences: A173085 A173086 A173087 * A173089 A173090 A173091


KEYWORD

nonn


AUTHOR

JuriStepan Gerasimov, Feb 14 2010


EXTENSIONS

Edited, corrected and extended by Klaus Brockhaus, R. J. Mathar and N. J. A. Sloane, Mar 03 2010
Edited by Charles R Greathouse IV, Mar 24 2010


STATUS

approved



