The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173007 Triangle of polynomial coefficients: p(x,n,q) = 1 if n = 0, Product_{i=1..n} (x + q^i) otherwise, with q = 3. 1
 1, 3, 1, 27, 12, 1, 729, 351, 39, 1, 59049, 29160, 3510, 120, 1, 14348907, 7144929, 882090, 32670, 363, 1, 10460353203, 5223002148, 650188539, 24698520, 297297, 1092, 1, 22876792454961, 11433166050879, 1427185336941, 54665851779 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Triangle T(n,k), read by rows, given by [3,6,27,72,243,702,2187,6480,...] DELTA [1,0,3,0,9,0,27,0,81,0,243,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 01 2011 LINKS FORMULA q=3; p(x,n,q) = 1 if n=0, Product_{i=1..n} (x + q^i) otherwise. T(n,k) = 3^n*T(n-1,k) + T(n-1,k-1), T(0,0)=1. - Philippe Deléham, Oct 01 2011 EXAMPLE {1}, {3, 1}, {27, 12, 1}, {729, 351, 39, 1}, {59049, 29160, 3510, 120, 1}, {14348907, 7144929, 882090, 32670, 363, 1}, {10460353203, 5223002148, 650188539, 24698520, 297297, 1092, 1}, MATHEMATICA p[x_, n_, q_] = If[n == 0, 1, Product[x + q^i, {i, 1, n}]]; Table[Table[CoefficientList[p[x, n, q], x], {n, 0, 10}], {q, 2, 10}]; Table[Flatten[Table[CoefficientList[p[x, n, q], x], {n, 0, 10}]], {q, 2, 10}] CROSSREFS Cf. A108084 (for q=2), A203148. Sequence in context: A289329 A033464 A170924 * A113099 A317930 A270078 Adjacent sequences:  A173004 A173005 A173006 * A173008 A173009 A173010 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Feb 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 11:01 EDT 2020. Contains 337442 sequences. (Running on oeis4.)