%I #2 Mar 30 2012 17:34:38
%S 0,0,1,0,1,1,0,1,2,4,0,1,3,7,8,0,1,4,12,22,28,0,1,5,19,48,79,76,0,1,6,
%T 28,92,204,290,272,0,1,7,39,160,463,900,1133,880,0,1,8,52,258,940,
%U 2404,4128,4586,3328
%N Antidiagonal triangle sequence based on recursion: f(n,a)=a*f(n-1,a)+n*f(n-2,a)
%C Row sums are:
%C {0, 1, 2, 7, 19, 67, 228, 893, 3583, 15705,...}.
%F f(n,a)=a*f(n-1,a)+n*f(n-2,a);
%F t(n,m)=antidiagonal(f(n,a))
%e {0},
%e {0, 1},
%e {0, 1, 1},
%e {0, 1, 2, 4},
%e {0, 1, 3, 7, 8},
%e {0, 1, 4, 12, 22, 28},
%e {0, 1, 5, 19, 48, 79, 76},
%e {0, 1, 6, 28, 92, 204, 290, 272},
%e {0, 1, 7, 39, 160, 463, 900, 1133, 880},
%e {0, 1, 8, 52, 258, 940, 2404, 4128, 4586, 3328}
%t f[0, a_] := 0; f[1, a_] := 1;
%t f[n_, a_] := f[n, a] = a*f[n - 1, a] + n*f[n - 2, a];
%t m1 = Table[f[n, a], {n, 0, 10}, {a, 1, 11}];
%t Table[Table[m1[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
%t Flatten[%]
%K nonn,tabl,uned
%O 0,9
%A _Roger L. Bagula_, Feb 07 2010