login
Triangle of binomial sums read by rows: T(n,k) = sum(C(2n-2k-i,i) * C(2k-i,i), i=0..min(k,n-k)).
3

%I #20 Mar 14 2014 12:39:10

%S 1,1,1,1,2,1,1,4,4,1,1,6,11,6,1,1,8,22,22,8,1,1,10,37,63,37,10,1,1,12,

%T 56,136,136,56,12,1,1,14,79,249,376,249,79,14,1,1,16,106,410,849,849,

%U 410,106,16,1,1,18,137,627,1663,2317,1663,627,137,18,1,1,20,172,908,2942,5371,5371,2942,908,172,20,1,1,22,211,1261,4826,11017,14545,11017,4826,1261,211,22,1

%N Triangle of binomial sums read by rows: T(n,k) = sum(C(2n-2k-i,i) * C(2k-i,i), i=0..min(k,n-k)).

%C The matrix inverse starts

%C 1;

%C -1,1;

%C 1,-2,1;

%C -1,4,-4,1;

%C 0,-8,13,-6,1;

%C 7,12,-38,26,-8,1;

%C -35,-12,114,-101,43,-10,1; - _R. J. Mathar_, Mar 22 2013

%F G.f.: (1 -x -x*y -2*x^2*y +x^3*y +x^3*y^2 +4*x^4*y^2 -x^6*y^3) / (1 -2*x +x^2 -2*x*y+2*x^3*y +x^2*y^2 +2*x^3*y^2 +3*x^4*y^2 -2*x^5*y^2 -2*x^5*y^3 -6*x^6*y^3 +x^8*y^4).

%F Central coefficients T(2n,n) = A188648.

%e G.f. =

%e 1 +

%e (y + 1)*x +

%e (y^2 + 2*y + 1)*x^2 +

%e (y^3 + 4*y^2 + 4*y + 1)*x^3 +

%e (y^4 + 6*y^3 + 11*y^2 + 6*y + 1)*x^4 + ...

%e Triangle begins:

%e 1,

%e 1, 1,

%e 1, 2, 1,

%e 1, 4, 4, 1,

%e 1, 6, 11, 6, 1,

%e 1, 8, 22, 22, 8, 1,

%e 1, 10, 37, 63, 37, 10, 1,

%e 1, 12, 56, 136, 136, 56, 12, 1,

%e 1, 14, 79, 249, 376, 249, 79, 14, 1

%t Flatten[Table[Sum[Binomial[2n-2k-i,i]Binomial[2k-i,i],{i,0,Min[k,n-k]}],{n,0,12},{k,0,n}]]

%o (Maxima) create_list(sum(binomial(2*n-2*k-i,i)*binomial(2*k-i,i),i,0,min(k,n-k)),n,0,10,k,0,n);

%Y Cf. A188648, A054142, A027989.

%K nonn,easy,tabl

%O 0,5

%A _Emanuele Munarini_, Apr 07 2011