OFFSET
1,1
COMMENTS
It is unknown if this is a finite or infinite sequence. Can it ever have a prime value after a(1) = 17? It can be semiprime, as 371 = 7 * 53; 1589 = 7 * 227; 15943 = 107 * 149; 214315 = 5 * 42863; 2288431 = 23 * 99497; and 16389861 = 3 * 5463287.
LINKS
Eric W. Weisstein, Generalized Fermat Number.
FORMULA
SUM[i=1..n] {primes of the form (k+1)^2^m + k^2^m, with m>1.}
EXAMPLE
a(29) = 17 + 97 + 257 + 337 + 881 + 3697 + 10657 + 16561 + 49297 + 65537 + 66977 + 89041 + 149057 + 847601 + 988417 + 1146097 + 1972097 + 2070241 + 2522257 + 2836961 + 3553777 + 3959297 + 4398577 + 5385761 + 7166897 + 11073217 + 17653681 + 32530177 + 41532497 + 44048497.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 06 2010
STATUS
approved