%I #26 Oct 13 2024 09:01:36
%S 1,2,10,117,4006,451206,158753814,187497290034,706152947468301
%N The number of ways to dissect an n X n square into polyominoes of size n.
%H Jiahua Chen, Aneesha Manne, Rebecca Mendum, Poonam Sahoo, Alicia Yang, <a href="https://arxiv.org/abs/1911.09792">Minority Voter Distributions and Partisan Gerrymandering</a>, arXiv:1911.09792 [cs.CY], 2019.
%H Johan de Ruiter, <a href="https://theses.liacs.nl/189">On Jigsaw Sudoku Puzzles and Related Topics</a>, Bachelor Thesis, Leiden Institute of Advanced Computer Science, 2010.
%H Christopher Donnay and Matthew Kahle, <a href="https://arxiv.org/abs/2311.13550">Asymptotics of Redistricting the n X n grid</a>, arXiv:2311.13550 [math.CO], 2023.
%H R. S. Harris, <a href="http://www.bumblebeagle.org/polyominoes/tilingcounting/counting_9x9_tilings.pdf">Counting Nonomino Tilings and Other Things of that Ilk</a>, G4G9 Gift Exchange book, 2010.
%H R. S. Harris, <a href="http://www.bumblebeagle.org/polyominoes/tilingcounting">Counting Polyomino Tilings</a> [From Bob Harris (me13013(AT)gmail.com), Mar 13 2010]
%F a(3) = A167243(3). a(4) = A167248(4). a(5) = A167251(5). a(6) = A167254(6). a(7) = A167255(7). a(8) = A167258(8). - _R. J. Mathar_, Oct 13 2024
%e A 2 X 2 square can be covered by two dominoes by either positioning them vertically or horizontally.
%Y Intersects with A167251, A167254, A167255, A167258.
%Y Diagonal of A348452.
%K nonn
%O 1,2
%A _Johan de Ruiter_, Feb 04 2010
%E a(9) from Bob Harris (me13013(AT)gmail.com), Mar 13 2010