%I #28 Feb 24 2023 11:58:25
%S 5,11,17,41,101,227,347,641,1091,1277,1427,1481,1487,1607,2687,3527,
%T 3917,4001,4127,4637,4787,4931,8231,9461,10331,11777,12107,13901,
%U 14627,16061,19421,20747,21011,21557,22271,23741,25577,26681,26711,27737
%N Primes p such that (p, p+2, p+6, p+12) is a prime quadruple.
%C The four primes do not have to be consecutive. - _Harvey P. Dale_, Jul 23 2011
%D R. K. Guy, Unsolved Problems in Number Theory, E30.
%D P. A. MacMahon, The prime numbers of measurement on a scale, Proc. Camb. Phil. Soc. 21 (1923), 651-654; reprinted in Coll. Papers I, pp. 797-800.
%H Charles R Greathouse IV, <a href="/A172454/b172454.txt">Table of n, a(n) for n = 1..10000</a>
%H G. E. Andrews, <a href="http://www.jstor.org/stable/2318498">MacMahon's prime numbers of measurement</a>, Amer. Math. Monthly, 82 (1975), 922-923.
%H R. L. Graham and C. B. A. Peck, <a href="https://www.jstor.org/stable/2315138">Problem E1910</a>, Amer. Math. Monthly, 75 (1968), 80-81.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeTriplet.html">Prime Triplet</a>.
%e The first two terms correspond to the quadruples (5,7,11,17) and (11,13,17,23).
%p for n from 1 by 2 to 110000 do; if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+12) then print(n) else fi;od;
%t Select[Prime[Range[3100]],And@@PrimeQ[{#+2,#+6,#+12}]&] (* _Harvey P. Dale_, Jul 23 2011 *)
%o (PARI) forprime(p=2,1e4,if(isprime(p+2)&&isprime(p+6)&&isprime(p+12), print1(p", "))) \\ _Charles R Greathouse IV_, Mar 04 2012
%Y Cf. A073648, A098412.
%K nonn
%O 1,1
%A _Michel Lagneau_, Feb 03 2010