login
a(1) = 1, and for each n >= 2, a(n) is the smallest number such that 1/sin(a(n)) < 1/sin(a(k)) for all k < n, so that 1/sin(a(1)) > 1/sin(a(2)) > ... > 1/sin(a(n)) > ...
0

%I #25 Aug 13 2019 13:18:00

%S 1,2,4,6,22,333,355,103993,104348,1042060,1146408,4272943,5419351,

%T 80143857

%N a(1) = 1, and for each n >= 2, a(n) is the smallest number such that 1/sin(a(n)) < 1/sin(a(k)) for all k < n, so that 1/sin(a(1)) > 1/sin(a(2)) > ... > 1/sin(a(n)) > ...

%D J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 83, p. 29, Ellipses, Paris 2008. Also Entry 137, p. 47.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Pi.html">Pi</a>

%e 1/sin(1) = 1.1883951; 1/sin(2) = 1.0997501; 1/sin(4) = - 1.3213487.

%p a:= evalf(1/sin(1)); for n from 2 to 10000000 do; if a > evalf(1/sin(n)) then a:= evalf(1/sin(n)); print(n); else fi ; od;

%t vm = 2; s = {}; Do[v = 1/Sin[n]; If[v < vm, vm = v; AppendTo[s, n]], {n, 1, 110000}]; s (* _Amiram Eldar_, Aug 10 2019 *)

%o (PARI) lista(NN) = {my(x=2); for(k=1, NN, if(1/sin(k)<x, x=1/sin(k); print1(k", ")));} \\ _Jinyuan Wang_, Aug 12 2019

%Y Cf. A002485, A046959, A046965, A046964, A172445, A172446.

%K nonn,more

%O 1,2

%A _Michel Lagneau_, Feb 03 2010

%E a(13) corrected and a(14) added by _Amiram Eldar_, Aug 10 2019