login
A172446
a(1) = 1, and for each k >=2, a(k) is the smallest number n such that n/cos(n) > a(k)/cos(a(k)), so that a(1)/cos(a(1)) > a(2)/cos(a(2)) > ... > a(k)/cos(a(k)) > ...
3
1, 2, 4, 8, 17, 27, 33, 77, 121, 165, 209, 212, 256, 300, 344, 366, 1054, 1764, 2474, 3184, 3894, 4604, 5314, 6024, 6734, 7444, 8154, 8864, 9574, 10284, 10994, 11704, 12414, 13124, 13834, 14544, 15254, 15964, 16674, 17384, 18094, 18804, 19514
OFFSET
1,2
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 83, p. 29, Ellipses, Paris 2008. Also Entry 137, p. 47.
LINKS
EXAMPLE
1/cos(1) = 1.850815..., 2/cos(2) = -4.805995..., 4/cos(4) = -6.119542...
MAPLE
a:= evalf(1/cos(1)); for n from 2 to 10000000 do; if a > evalf(n/cos(n)) then a:= evalf(n/cos(n)); print(n); else fi ; od;
MATHEMATICA
s = {1}; rm = 1/Cos[1]; Do[r = n/Cos[n]; If[r < rm, rm = r; AppendTo[s, n]], {n, 2, 2*10^4}]; s (* Amiram Eldar, Aug 11 2019 *)
CROSSREFS
Cf. A172448.
Sequence in context: A090804 A342773 A080281 * A320331 A289322 A349842
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 03 2010
EXTENSIONS
a(35) corrected by Amiram Eldar, Aug 11 2019
STATUS
approved