The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172390 G.f. satisfies: A(x) = G(x/A(x))^2 and G(x)^2 = A(x*G(x)^2) where G(x) = Sum_{n>=0} C(2n,n)^2*x^n. 2
 1, 8, 24, 0, -168, 0, 2112, 0, -32040, 0, 536256, 0, -9542976, 0, 177126912, 0, -3390361128, 0, 66436117440, 0, -1326185205696, 0, 26872637815296, 0, -551301904867392, 0, 11428295231789568, 0, -239010764560888320, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f.: A(x) = x/Series_Reversion(x*G(x)^2)) where G(x) = Sum_{n>=0} C(2n,n)^2*x^n = 1/agm(1, (1-16*x)^(1/2)) = g.f. of A002894 and G(x)^2 is the g.f. of A036917. Self-convolution of A158101, which is a bisection of A158100; A158100 has g.f. F(x) that satisfies: F(x) = 1/AGM(1, 1 - 8*x/F(x) ). a(n) = [x^n] AGM(1,(1-16x)^(1/2))^(2n-2)/(1-n) for n>1 where AGM is the arithmetic-geometric mean of Gauss. - Paul D. Hanna, Mar 20 2010] EXAMPLE G.f.: A(x) = 1 + 8*x + 24*x^2 - 168*x^4 + 2112*x^6 - 32040*x^8 + ... A(x) = G(x/A(x))^2 where G(x) = 1/AGM(1, (1-16x)^(1/2)) is the power series: G(x) = 1 + 2^2*x + 6^2*x^2 + 20^2*x^3 + 70^2*x^4 + 252^2*x^5 + ... + C(2n,n)^2*x^n + ... The square root of g.f. A(x) begins: A(x)^(1/2) = 1 + 4*x + 4*x^2 - 16*x^3 - 28*x^4 + 176*x^5 + 336*x^6 + ... + A158101(n)*x^n + ... PROG (PARI) {a(n)=local(G=sum(m=0, n, binomial(2*m, m)^2*x^m)+x*O(x^n)); polcoeff(x/serreverse(x*G^2), n)} (PARI) {a(n)=if(n==1, 8, polcoeff(agm(1, sqrt(1-16*x +x^2*O(x^n)))^(2*n-2), n)/(1-n))} \\ Paul D. Hanna, Mar 20 2010 CROSSREFS Cf. A036917, A002894, A158101, A158100. Sequence in context: A220973 A233470 A334720 * A250035 A263630 A205376 Adjacent sequences:  A172387 A172388 A172389 * A172391 A172392 A172393 KEYWORD sign AUTHOR Paul D. Hanna, Feb 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 05:31 EST 2020. Contains 338781 sequences. (Running on oeis4.)