OFFSET
0,3
FORMULA
O.g.f.: A(x) = Sum_{n>=0} 2*x^n/(2 - 3^n*x)^(n+1).
E.g.f.: E(x) = Sum_{n>=0} exp(3^n*x/2)*(x/2)^n/n!.
a(n) = A135079(n)/2^n.
EXAMPLE
O.g.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 44*x^4 + 481*x^5 + 9272*x^6 +...
A(x) = 2/(2-x) + 2*x/(2-3*x)^2 + 2*x^2/(2-3^2*x)^3 + 2*x^3/(2-3^3*x)^4 +...+ 2*x^n/(2-3^n*x)^(n+1) +...
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 44*x^4/4! + 481*x^5/5! +...
E(x) = exp(x/2) + exp(3*x/2)*x/2 + exp(3^2*x/2)*(x/2)^2/2! + exp(3^3*x/2)*(x/2)^3/3! +...+ exp(3^n*x/2)*(x/2)^n/n! +...
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*3^(k*(n-k)))/2^n}
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, exp(3^k*x/2 +x*O(x^n))*(x/2)^k/k!), n)}
(PARI) {a(n)=polcoeff(sum(k=0, n, (x/2)^k/(1-3^k*x/2 +x*O(x^n))^(k+1)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 03 2010
STATUS
approved