login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
3

%I #13 May 10 2021 03:46:39

%S 1,1,1,1,1,1,1,1,1,1,1,6,6,6,1,1,6,36,36,6,1,1,11,66,396,66,11,1,1,36,

%T 396,2376,2376,396,36,1,1,41,1476,16236,16236,16236,1476,41,1,1,91,

%U 3731,134316,246246,246246,134316,3731,91,1,1,221,20111,824551,4947306,9070061,4947306,824551,20111,221,1

%N Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.

%C Start from the sequence 0, 1, 1, 1, 6, 6, 11, 36, 41, 91, 221, 296, 676, 1401, 2156, ..., f(n) = f(n-2) + 5*f(n-3), and its partial products c(n) = 1, 1, 1, 1, 6, 36, 396, 14256, 584496, 53189136, ... . Then T(n,k) = round(c(n)/(c(k)*c(n-k))).

%H G. C. Greubel, <a href="/A172360/b172360.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k, q) = round(c(n,q)/(c(k,q)*c(n-k,q)), where c(n,q) = Product_{j=1..n} f(j,q), f(n, q) = f(n-2, q) + q*f(n-3, q), f(0,q)=0, f(1,q) = f(2,q) = 1, and q = 5. - _G. C. Greubel_, May 09 2021

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 1, 1, 1;

%e 1, 6, 6, 6, 1;

%e 1, 6, 36, 36, 6, 1;

%e 1, 11, 66, 396, 66, 11, 1;

%e 1, 36, 396, 2376, 2376, 396, 36, 1;

%e 1, 41, 1476, 16236, 16236, 16236, 1476, 41, 1;

%e 1, 91, 3731, 134316, 246246, 246246, 134316, 3731, 91, 1;

%e 1, 221, 20111, 824551, 4947306, 9070061, 4947306, 824551, 20111, 221, 1;

%t f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f[n-3, q]];

%t c[n_, q_]:= Product[f[j, q], {j,n}];

%t T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];

%t Table[T[n, k, 5], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, May 09 2021 *)

%o (Sage)

%o @CachedFunction

%o def f(n,q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q)

%o def c(n,q): return product( f(j,q) for j in (1..n) )

%o def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))

%o flatten([[T(n,k,5) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 09 2021

%Y Cf. A172353 (q=1), A172358 (q=2), A172359 (q=4), this sequence (q=5).

%K nonn,tabl,less

%O 0,12

%A _Roger L. Bagula_, Feb 01 2010

%E Definition corrected to give integral terms by _G. C. Greubel_, May 09 2021