login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172315 Primes of the form 2^i*3^j - 1 with i + j = 13. 1
8191, 27647, 62207, 139967, 314927, 472391, 1062881 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Note that bases 2 = prime(1), 3 = prime(2)

13 = prime(2 x 3) = prime(prime(1) x prime(2))

Smallest term 8191 is the 5th Mersenne prime

It is a finite "FUN" sequence with 7 = prime(4) terms

REFERENCES

Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983

LINKS

Table of n, a(n) for n=1..7.

EXAMPLE

8191 = 2^13 - 1 = prime(1028)

27647 = 2^10 x 3^3 - 1 = prime(3016) = prime(2^3 x 13 x 29)

62207 = 2^8 x 3^5 - 1 = prime(6253) = prime(13^ 2 x 37)

139967 = 2^6 x 3^7 - 1 = prime(13005)

314927 = 2^4 x 3^9 - 1 = prime(27191), index is prime(2978)

472391 = 2^3 x 3^10 - 1 = prime(39419), index is prime(4150)

1062881 = 2 x 3^12 - 1 = prime(83024)

MATHEMATICA

Select[Union[Flatten[{2^#[[1]] 3^#[[2]]-1, 2^#[[2]] 3^#[[1]]-1}&/@ Table[ {n, 13-n}, {n, 0, 13}]]], PrimeQ] (* Harvey P. Dale, Jan 11 2016 *)

CROSSREFS

Cf. A005105, A168385, A168349

Sequence in context: A108093 A051334 A145592 * A103902 A075960 A011563

Adjacent sequences:  A172312 A172313 A172314 * A172316 A172317 A172318

KEYWORD

fini,full,nonn

AUTHOR

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Jan 31 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 00:24 EST 2016. Contains 278993 sequences.