%I
%S 17,31,41,47,61,83,97,101,103,107,157,163,223,233,241,257,271,277,283,
%T 293,307,311,313,317,337,401,421,457,467,491,521,523,541,547,557,563,
%U 577,593,601,613,617,631,641,643,647,653,661,673,677,701,743,761,773
%N Primes p such that exactly one of 2p3 and 3p2 is prime.
%C A010051(2*a(n)+3) + A010051(3*a(n)+2) = 1; each term is either a term of A063908 or of A088878.  _Reinhard Zumkeller_, Jul 02 2015
%C No terms end in 9. Dickson's conjecture implies that there are infinitely many terms.  _Robert Israel_, Jul 02 2015
%H Reinhard Zumkeller, <a href="/A172287/b172287.txt">Table of n, a(n) for n = 1..10000</a>
%e a(1)=17 because 2*173=31 is prime and 3*172=49 is nonprime.
%e 19 is not a term because neither 2*193=35 nor 3*192=55 is prime;
%e 23 is not a term because both 2*233=43 and 3*232=67 are prime.
%p A172287:=n>`if`(isprime(n) and (isprime(2*n3) xor isprime(3*n2)), n, NULL): seq(A172287(n), n=1..1000); # _Wesley Ivan Hurt_, Jun 23 2015
%t Select[Prime@ Range@ 150, Xor[PrimeQ[2 #  3], PrimeQ[3 #  2]] &] (* _Michael De Vlieger_, Jul 01 2015 *)
%o (Haskell)
%o a172287 n = a172287_list !! (n1)
%o a172287_list = filter
%o (\p > a010051' (2 * p  3) + a010051' (3 * p  2) == 1) a000040_list
%o  _Reinhard Zumkeller_, Jul 02 2015
%Y Cf. A000040, A010051, A063908, A088878, A259730.
%K nonn,easy
%O 1,1
%A _JuriStepan Gerasimov_, Jan 30 2010
%E Extended by _Charles R Greathouse IV_, Mar 25 2010
