login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172118 n*(n+1)*(5*n^2-n-3)/2. 1
0, 1, 45, 234, 730, 1755, 3591, 6580, 11124, 17685, 26785, 39006, 54990, 75439, 101115, 132840, 171496, 218025, 273429, 338770, 415170, 503811, 605935, 722844, 855900, 1006525, 1176201, 1366470, 1578934, 1815255, 2077155, 2366416, 2684880 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = n*(n*(n+1)*(20*n-17)/6) - sum( i*(i+1)*(20*i-17)/2, i=0..n-1 ) = n*(n+1)*(5*n^2-n-3)/2. More generally: n*(n*(n+1)*(2*d*n-2*d+3)/6) - sum( i*(i+1)*(2*d*i-2*d+3)/6, i=0..n-1 ) = n*(n+1)*(3*d*n^2-d*n+4*n-2*d+2)/12; in this sequence is d=10. - Bruno Berselli, May 07 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

G.f. -x*(1+40*x+19*x^2) / (x-1)^5 . - R. J. Mathar, Nov 17 2011

MATHEMATICA

Table[n*(n + 1)*(5*n^2 - n - 3)/2, {n, 0, 40}] (* or *) CoefficientList[Series[-x (1 + 40 x + 19 x^2)/(x - 1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 20 2014 *)

PROG

(MAGMA) [n*(n+1)*(5*n^2-n-3)/2: n in [0..50]]; // Vincenzo Librandi, Aug 20 2014

CROSSREFS

Cf. A172117.

Sequence in context: A251444 A169717 A246420 * A127073 A089549 A178540

Adjacent sequences:  A172115 A172116 A172117 * A172119 A172120 A172121

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jan 26 2010

EXTENSIONS

Simplified formula and corrected sequence A172117 by Bruno Berselli, May 07 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 09:13 EST 2017. Contains 294879 sequences.